Alternative Splicing in the Mammalian Nervous System: Recent Insights into Mechanisms and Functional Roles

نویسندگان

  • Bushra Raj
  • Benjamin J. Blencowe
چکیده

High-throughput transcriptomic profiling approaches have revealed that alternative splicing (AS) of precursor mRNAs, a fundamental process by which cells expand their transcriptomic diversity, is particularly widespread in the nervous system. AS events detected in the brain are more highly conserved than those detected in other tissues, suggesting that they more often provide conserved functions. Our understanding of the mechanisms and functions of neural AS events has significantly advanced with the coupling of various computational and experimental approaches. These studies indicate that dynamic regulation of AS in the nervous system is critical for modulating protein-protein interactions, transcription networks, and multiple aspects of neuronal development. Furthermore, several underappreciated classes of AS with the aforementioned roles in neuronal cells have emerged from unbiased, global approaches. Collectively, these findings emphasize the importance of characterizing neural AS in order to gain new insight into pathways that may be altered in neurological diseases and disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

The roles of RFamide-related peptides (RFRPs), mammalian gonadotropin-inhibitory hormone (GnIH) orthologues in female reproduction

Objective(s): To benefit from reproduction and deal with challenges in the environmental conditions, animals must adapt internal physiology to maximize the reproduction rate. Maladaptive variations in the neurochemical systems and reproductive system can lead to manifestation of several significant mammalian reprocesses, including mammalian ovarian lifespan. RFamide-related peptide (RFRP, Rfrp)...

متن کامل

Alternative Splicing in Neurogenesis and Brain Development

Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manip...

متن کامل

A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators.

Recent advances in genome-wide analysis of alternative splicing indicate that extensive alternative RNA processing is associated with many proteins that play important roles in the nervous system. Although differential splicing and polyadenylation make significant contributions to the complexity of the nervous system, our understanding of the regulatory mechanisms underlying the neuron-specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2015